Mate2

sábado, 28 de noviembre de 2015

4.2 Álgebra de Matrices

 alejandra7     12:49     1 comment   

4.2 Álgebra de Matrices

El objetivo general de esta materia Matemáticas II es brindarnos nuevos conocimientos de nuevos temas aplicados en ella, como: Álgebra de Matrices




Definiciones básicas Una matriz m×n es una tabla o arreglo rectangular A de números reales con m reglones (o filas) y n columnas. (Reglones son horizontales y columnas son verticales.) Los números m y n son las dimensiones de A.
Los números reales en la matriz se llaman sus entradas. La entrada en reglón i y columna j se llama aij o Aij.
Inicio de página
Ejemplo Aquí es una matriz 4×5. Mueva el ratón sobre las entradas para ver sus nombres.
    A =
    0
    1
    2
    0
    3

    1/3
    -1
    10
    1/3
    2
    3
    1
    0
    1
    -3
    2
    1
    0
    0
    1
Inicio de página
Operaciones con matrices Trasposición
La matriz traspuesta, AT, de la matriz A es la matriz que se obtiene cambiando las filas por las columnas (o viceversa) en la matriz A. Sea A una matiz m×n y B = AT, entonces B es la matriz n×m con bij = aji.

Suma, Resta
Sea A y B matrices con las mismas dimensiones, entonces sus suma, A+B, se obtiene sumando entradas correspondientes. En símbolos, (A+B)ij = Aij + Bij. En forma parecida, sus resta, A - B, obtiene restando entradas correspondientes. En símbolos, (A-B)ij = Aij - Bij.

Multiplicación escalar
Sea A una matriz y c un número (llamado un escalar en este contexto), definimos el múltiple escalar, cA, como la matriz que se obtiene multiplicando cada entrada de A por c. En símbolos, (cA)ij = c(Aij).

Producto
Sea A una matriz con dimensiones m×n y B una matriz con dimensiones n×p, entonces el producto AB está definido, y tiene dimenciones m×p. La entrada (AB)ij se obtiene por multiplicar reglón i de A por columna j de B, hecho por multiplicar sus entradas correspondientes y sumar las resultados.

Inicio de página
Ejemplos Trasposición
0
1
2
T
1/3
-1
10
=
0
1/3
1
-1
2
10
Suma y múltiple escalar
0
1
1/3
-1
+2
1
-1
2/3
-2
=
2
-1
5/3
-5
Producto
0
1
1/3
-1
1
-1
2/3
-2
=
2/3
-2
-1/3
5/3
Visite la Herramienta Matriz Álgebra para hacer los computaciones más arriba. Visite también el Tutorial sobre álgebra de matrices para mirar un análisis más detallado de estas operaciones.
Inicio de página
Álgebra de matrices La matriz unidad de orden n×n es la matriz I de orden n×n en la cual todas las entradas son cero excepto los de la diagonal principal, que son 1. En símbolos:
    Iij = 1 si i = j y Iij = 0 si i ≠ j.
Una matriz cero es una matriz O en la cual todas las entradas son cero.
Las operaciones de adición, multiplicación escalar, multiplicación entre matrices se cumplen las siguientes reglas:
A+(B+C) = (A+B)+C Regla asociativa de adición
A+B = B+A Regla conmutativa de adición
A+O = O+A = A Regla unidad de adición
A+( - A) = O = ( - A)+A Regla inversa de adición
c(A+B) = cA+cB Regla distributiva
(c+d)A = cA+dA Regla distributiva
1A = A Unidad escalar
0A = O Cero escalar
A(BC) = (AB)C Regla asociativa de multiplicación
AI = IA = A Regla unidad de multiplicación
A(B+C) = AB + AC Regla distributiva
(A+B)C = AC + BC Regla distributiva
OA = AO = O Multiplicación por matriz cero
(A+B)T = AT + BT Trasposición de una suma
(cA)T = c(AT) Trasposición de un producto escalar
(AB)T = BTAT Trasposición de un producto matriz
La única regla que está notablemente ausente es la de conmutatividad del producto entre matrices. El producto entre matrices no es conmutativo: AB no es igual a BA en general.
Inicio de página
Ejemplos La siguiente es la matriz unidad de orden 4×4:
    I =
    1
    0
    0
    0
    0
    1
    0
    0
    0
    0
    1
    0
    0
    0
    0
    1
El fallo de la regla conmutativa para el producto entre matrices se muestra por el siguiente ejemplo:
    A =
    0
    1
    1/3
    -1
    B =
    1
    -1
    2/3
    -2
    AB =
    2/3
    -2
    -1/3
    5/3
    BA =
    -1/3
    2
    -2/3
    8/3
Inicio de página
Forma matriz de un sistema de ecuaciones lineales Una aplicación importante de multiplicación entre matrices es la siguiente: El sistema de ecuaciones lineales
  a11x1 + a12x2 + a13x3 + . . . + a1nxn=b1
  a21x1 + a22x2 + a23x3 + . . . + a2nxn=b2
   . . . . . . . . . . . . . .
  am1x1 + am2x2 + am3x3 + . . . + amnxn=bm
se puede escribir como la ecuación matriz
AX = B
donde
  A = a11a12a13 . . . a1n
a21a22a23 . . . a2n


. . . . . . .
am1am2am3 . . . amn
X = [x1, x2, x3, . . . , xn]T
y
B = [b1, b2, x3, . . . , bm]T
Inicio de página
Ejemplo El sistema
    x+y-z=4
    3x+y-z=6
    x +y-2z=4
    3x+2y-z=9
tiene forma matriz
    11-1 x = 4 .
    31-1y6
    11-2z4
    32-1


    9
    Inicio de página
Matriz inversa Sea A una matriz cuadrada, es decir, una matriz cuyo número de reglones es igual a su número de filas, entonces es posible a veces despejar a X en una ecuación matriz AX = B por "dividir por A." Precisamente, una matriz cuadrada A puede tener una inversa, que se escribe como A-1, con la propiedad
AA-1 = A-1A = I.
Si A tiene una inversa decimos que A es invertible, si no, decimos que A es singular. En el caso de A invertible, podemos despejar a X en la ecuación
AX = B
multiplicando ambos lados de la ecuación a la izquierda por A-1, que nos da
X = A-1B.
Inicio de página
Ejemplo
El sistema de ecuaciones
    124 x = 1
    246y1
    468z-1
tiene la solución
    x = 124 1 1
    y246
    1
    z468
    -1



    = 1-21
    1

    -22-1/2
    1

    1-1/20
    -1



    = -2 .

    1/2

    1/2
Inicio de página
Determinar si una matriz es invertible Para determinar si una matriz n×n A es invertible o no, y encontrar A1 si existe, escriba la matriz n×(2n) [A | I] (esta es A con la matriz unidad n×n a su lado).
Reduzca esta matriz hasta a la forma escalonada reducida.
Si la forma reducida es [I | B] (es decir, tiene la matriz unidad en la parte izquierda), entonces A es invertible y B = A-1. Si no puedes obtener I en la parte izquierda, entonces A es singular.
Inicio de página
Ejemplos La matriz
    A =
    1
    2
    4
    2
    4
    6
    4
    6
    8
es invertible. La matriz
    B =
    1
    2
    4
    2
    4
    6
    2
    4
    7
es singular.
Inicio de página
Inversa de una matriz 2×2 La matriz 2×2
    A =
    a
    b
    c
    d
es invertible si ad - bc no es cero y es singular si ad - bc = 0. El número ad - bc se llama el determinante de la matriz. Cuando la matriz es invertible su inversa se expresa por la formula
    A1 =
    1

    ad - bc
    d
    -b
    .
    -c
    a
Inicio de página
Ejemplo
1
2
1 =
1

(1)(4) - (2)(3)
4
-2
3
4

-31
    =
    -2
    1
    .
    3/2
    -1/2
Inicio de página
Aplicación: modelos económicos de insumo-producto Una matriz insumo-producto para una economía da, en su ja columna, las cantidades (en dólares o otra moneda apropiada) del productos de cada sector usado como insumo por sector j (en un año o otra apropiada unidad de tiempo). Da también la producción total de cada sector de la economía durante un año (llamada el vector producción cuando está escrito como una columna).
La matriz tecnología es la matriz que se obtiene dividiendo cada columna por la producción total del sector correspondiente. Su ija entrada , el ijo coeficiente tecnología, da el insumo de sector i para producir una unidad de producto del sector j. Un vector demanda es un vector columna que expresa la demanda total desde fuera la economía de los productos de cada sector. Sea A la matriz tecnología, X el vector producción, y D el vector demanda, entonces
(I - A)X = D,
o
X = (I - A)-1D.
Estas mismas ecuaciones son válidas si D es un vector que representa cambio de demanda, y X es un vector que representa cambio de producción. Las entradas en una columna de (I - A)-1 representan el cambio en producción de cada sector necesario para satisfacer una unidad de cambio de demanda en el sector que corresponde a aquella columna, tomando en cuenta todos los efectos directos y indirectos.















(2015). Álgebra de MatricesEn: zweigme… Buscado elMartes, 10 de noviembre de 2015 Disponible en: http://www.zweigmedia.com/MundoReal/Summary3a.html


ARYA, J. C. (2009). Matemáticas aplicadas a la administración. México: Pearson Educacíon.
  • Share This:  
  •  Facebook
  •  Twitter
  •  Google+
  •  Stumble
  •  Digg
Enviar por correo electrónicoEscribe un blogCompartir en XCompartir con Facebook
Entrada más reciente Entrada antigua Inicio

1 comentario:

  1. magnussfaber4 de marzo de 2022, 11:10

    Casino - The Strip - Mapyro
    This casino is located in Las 속초 출장샵 Vegas Boulevard. It is 안산 출장안마 one 광주광역 출장샵 of the closest casinos to the airport and it's 성남 출장마사지 actually closest to the airport. 통영 출장마사지 The hotel is

    ResponderEliminar
    Respuestas
      Responder
Añadir comentario
Cargar más...

Páginas

  • Página principal

Popular Posts

  • 4.3 Determinantes
    4.3 Determinantes El objetivo general de esta materia Matemáticas II es brindarnos nuevos conocimientos de nuevos tem...
  • 4.3.3 Propiedades de los determinantes.
    4.3.3 Propiedades de los determinantes.   El objetivo general de esta materia Matemáticas II es brindarnos nuevos conoc...
  • 4.1.2 Sistemas de ecuaciones lineales: consistentes, inconsistentes, y su representación paramétrica del conjunto solución.
    4.1.2 Sistemas de ecuaciones lineales: consistentes, inconsistentes, y su representación paramétrica del conjunto solución. ...
  • 2.3.2 Integral de una constante por una variable.
    2.3.2 Integral de una constante por una variable. Sé que ya estás desesperado por iniciar. Bueno pues, adelante, sólo se...
  • 4.1.5 Eliminación de Gauss y Gauss-Jordan.
    4.1.5 Eliminación de Gauss y Gauss-Jordan. El objetivo general de esta materia Matemáticas II es brindarnos nuevos co...
  • 4.3.2 Expansión por cofactores.
    4.3.2 Expansión por cofactores. El objetivo general de esta materia Matemáticas II es brindarnos nuevos conocimientos ...
  • 2.2.1 Integración con condiciones iniciales.
    2.2.1 Integración con condiciones iniciales. Hemos estado analizando temas de gran importancia que son necesarios para en...
  • 4.1 Sistemas de ecuaciones lineales.
    4.1 Sistemas de ecuaciones lineales. El objetivo general de esta materia Matemáticas II es brindarnos nuevos conocimi...
  • 3.2 Teorema Fundamental del cálculo.
    3.2 Teorema Fundamental del cálculo.  El objetivo general de esta materia Matemáticas II es brindarnos nuevos conocim...
  • 2.3.6 Integral de una suma (diferencia) de funciones.
    2.3.6 Integral de una suma (diferencia) de funciones. El objetivo general de esta materia Matemáticas II es brindarnos nue...

Recent Posts

Unordered List

Pages

  • Página principal

Text Widget

Blog Archive

  • ▼  2015 (43)
    • ►  diciembre (2)
    • ▼  noviembre (41)
      • 4.3.4 Regla de Cramer.
      • 4.3.3 Propiedades de los determinantes.
      • 4.3.2 Expansión por cofactores.
      • 4.3.1 Definición de un determinante.
      • 4.3 Determinantes
      • 4.2.4 Matriz inversa.
      • 4.2.3 Propiedades de las operaciones con matrices.
      • 4.2.2 Operaciones con matrices (suma, diferencia, ...
      • 4.2.1 Tipos de matrices (cuadrada, rectangular, tr...
      • 4.2 Álgebra de Matrices
      • 4.1.5.5 Sistemas homogéneos.
      • 4.1.5.4 Reducción de Gauss y Gauss-Jordan.
      • 4.1.5.3 Operaciones elementales sobre renglones.
      • 4.1.5.2 Expresión matricial de un sistema de ecuac...
      • 4.1.5.1 Definición de matriz.
      • 4.1.5 Eliminación de Gauss y Gauss-Jordan.
      • 4.1.4 Sistemas de ecuaciones equivalentes.
      • 4.1.3 Métodos para resolución de sistemas de ecuac...
      • 4.1.2 Sistemas de ecuaciones lineales: consistente...
      • 4.1 Sistemas de ecuaciones lineales.
      • 3.4 Área entre una y dos curvas.
      • 3.3 Propiedades de la integral definida.
      • 3.2 Teorema Fundamental del cálculo.
      • 3.1 Área bajo la curva.
      • 2.3.10 Integrales incluyen au 2.3.11 I...
      • 2.3.9 Integrales que incluyen (1/u)du
      • 2.3.8 Integrales que incluyen funciones logarítmicas.
      • 2.3.7.2 Integrales que incluyen funciones exponenc...
      • 2.3.7 Regla de la potencia.
      • 2.3.6 Integral de una suma (diferencia) de funciones.
      • 2.3.5 Integral de una constante por una función de x.
      • 2.3.3 Integral de xn
      • 2.3.2 Integral de una constante por una variable.
      • 2.3.1 Integral indefinida de una constante.
      • 2.3 Fórmulas básicas de integración.
      • 2.2.1 Integración con condiciones iniciales.
      • 2.2 Integral indefinida.
      • 2.1 Antiderivada.
      • 1.3 Máximos y mínimos de funciones de dos variables.
      • 1.2 Derivadas parciales.
      • 1.1 Funciones en dos variables.
Con la tecnología de Blogger.

About

Blogger templates

Sample Text

Copyright © Mate2 | Powered by Blogger
Design by Hardeep Asrani | Blogger Theme by NewBloggerThemes.com | Distributed By Gooyaabi Templates