Mate2

sábado, 28 de noviembre de 2015

2.2 Integral indefinida.

 alejandra7     11:11     No comments   

2.2 Integral indefinida.






Integración indefinida

Commons-emblem-question book orange.svg
Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas. Este aviso fue puesto el 7 de junio de 2015. Puedes añadirlas o avisar al autor principal del artículo en su página de discusión pegando: {{subst:Aviso referencias|Integración indefinida}} ~~~~
El campo vectorial definido asignando a cada punto (x, y) un vector que tiene por pendiente ƒ(x) = (x3/3)-(x2/2)-x. Se muestran tres de las infinitas primitivas de ƒ(x) que se pueden obtener variando la constante de integración C.
En cálculo infinitesimal, la función primitiva o antiderivada de una función f es una función F cuya derivada es f, es decir, F ′ = f.
Una condición suficiente para que una función f admita primitivas sobre un intervalo es que sea continua en dicho intervalo.
Si una función f admite una primitiva sobre un intervalo, admite una infinidad, que difieren entre sí en una constante: si F1 y F2 son dos primitivas de f, entonces existe un número real C, tal que F1 = F2 + C. A C se le conoce como constante de integración. Como consecuencia, si F es una primitiva de una función f, el conjunto de sus primitivas es F + C. A dicho conjunto se le llama integral indefinida de f y se representa como:
\int{f}   ó   \int{f(x)dx}
El proceso de hallar la primitiva de una función se conoce como integración indefinida y es por tanto el inverso de la derivación. Las integrales indefinidas están relacionadas con las integrales definidas a través del teorema fundamental del cálculo, y proporcionan un método sencillo de calcular integrales definidas de numerosas funciones.

Índice

  • 1 Ejemplo
  • 2 Constante de integración
  • 3 Otras propiedades
    • 3.1 Linealidad de la integral indefinida
    • 3.2 La primitiva de una función impar es siempre par
    • 3.3 La primitiva F de una función f par es impar con tal de imponerse F(0) = 0
    • 3.4 La primitiva de una función periódica es la suma de una función lineal y de una función periódica
    • 3.5 Relación entre la integral de una función y la de su recíproca
    • 3.6 Existencia de primitivas
  • 4 Cálculo de primitivas
    • 4.1 Integrales inmediatas
    • 4.2 Métodos de integración
  • 5 Véase también
  • 6 Enlaces externos

Ejemplo

Una primitiva de la función \scriptstyle f(x)=\cos(x) en \scriptstyle \mathbb{R}, es la función \scriptstyle F(x)=\sin(x) ya que:
\frac{d}{dx}(\sin(x))=\cos(x)\ \forall x\in\mathbb{R}
Dado que la derivada de una constante es cero, tendremos que cos(x) tendrá un número infinito de primitivas tales como sin(x), sin(x) + 5, sin(x) - 100, etc. Es más, cualquier primitiva de la función f(x) = cos(x) será de la forma sin(x) + C donde C es una constante conocida como constante de integración.

Constante de integración

Artículo principal: Constante de integración
La derivada de cualquier función constante es cero. Una vez que se ha encontrado una primitiva F, si se le suma o resta una constante C, se obtiene otra primitiva. Esto ocurre porque (F + C) ' = F ' + C ' = F ' + 0 = F '. La constante es una manera de expresar que cada función tiene un número infinito de primitivas diferentes.
Para interpretar el significado de la constante de integración se puede observar el hecho de que la función f (x) es la derivada de otra función F (x), es decir, que para cada valor de x, f (x) le asigna la pendiente de F (x). Si se dibuja en cada punto (x, y) del plano cartesiano un pequeño segmento con pendiente f (x), se obtiene un campo vectorial como el que se representa en la figura de la derecha. Entonces el problema de encontrar una función F (x) tal que su derivada sea la función f (x) se convierte en el problema de encontrar una función de la gráfica de la cual, en todos los puntos sea tangente a los vectores del campo. En la figura de la derecha se observa como al variar la constante de integración se obtienen diversas funciones que cumplen esta condición y son traslaciones verticales unas de otras.

Otras propiedades

Linealidad de la integral indefinida

La primitiva es lineal, es decir:
  1. Si f es una función que admite una primitiva F sobre un intervalo I, entonces para todo real k, una primitiva de kf sobre el intervalo I es kF.
  2. Si F y G son primitivas respectivas de dos funciones f y g, entonces una primitiva de f + g es F + G.
La linealidad se puede expresar como sigue:
\int (k\cdot f\left( x \right)+ l\cdot g\left( x \right))= k\cdot \int{f\left( x \right)}+l\cdot \int{g\left( x \right)}

La primitiva de una función impar es siempre par

En efecto, como se ve en la figura siguiente, las áreas antes y después de cero son opuestas, lo que implica que la integral entre -a y a es nula, lo que se escribe así: F(a) - F(-a) = 0, F siendo una primitiva de f, impar. Por lo tanto siempre tenemos F(-a) = F(a): F es par.
Integral de función impar.png

La primitiva F de una función f par es impar con tal de imponerse F(0) = 0

En efecto, según la figura, las áreas antes y después de cero son iguales, lo que se escribe con la siguiente igualdad de integrales:
Integral de función par.png
Es decir F(0) - F(-a) = F(a) - F(0). Si F(0) = 0, F(-a) = - F(a): F es impar.

La primitiva de una función periódica es la suma de una función lineal y de una función periódica

Primitiva de una función periódica.png
Para probarlo, hay que constatar que el área bajo una curva de una función periódica, entre las abcisas x y x + T (T es el período) es constante es decir no depende de x. La figura siguiente muestra tres áreas iguales. Se puede mostrar utilizando la periodicidad y la relación de Chasles, o sencillamente ¡con unas tijeras! (cortando y superponiendo las áreas de color).
En término de primitiva, significa que F(x + T) - F(x) es una constante, que se puede llamar A. Entonces la función G(x) = F(x) - Ax/T es periódica de período T. En efecto G(x + T) = F(x + T) - A(x + T)/T = F(x) + A - Ax/T - AT/T = F(x) - Ax/T = G(x). Por consiguiente F(x) = G(x) + Ax/T es la suma de G, periódica, y de Ax/T, lineal.
Función periódica area constante.png

Relación entre la integral de una función y la de su recíproca

Para simplificar, se impone f(0) = 0; a es un número cualquiera del dominio de f. Entonces tenemos la relación:
Integral de la recíproca.png
El área morada es la integral de f, el área amarilla es la de f -1, y la suma es el rectángulo cuyos costados miden a y f(a) (valores algebraicos). Se pasa de la primera curva, la de f, a la segunda, la de f -1 aplicando la simetría axial alrededor de la diagonal y = x.
El interés de esta fórmula es permitir el cálculo de la integral de f -1 sin conocer una primitiva; de hecho, ni hace falta conocer la expresión de la recíproca.

Existencia de primitivas

Cualquier función continua sobre f:\R\to\R^n admite localmente una antiderivada o primitiva. Sin embargo en espacios de dimensión finita la continuidad no garantiza la existencia de antiderivadas. Una condición suficiente de existencia de antiderivadas es que la imagen pertenezca a un espacio vectorial conveniente, también llamado \scriptstyle c^\infty-completo. La propiedad definitoria de dichos espacios es que toda función f:\R\to E con f\in C^\infty(\R,E) admite una función primitiva. Si el espacio no es \scriptstyle c^\infty-completo la continuidad o incluso la suavidad de una función no garantiza la existencia de antiderivadas.

Cálculo de primitivas

Integrales inmediatas

Artículo principal: Anexo:Integrales
Para encontrar una primitiva de una función dada, basta con descomponerla (escribirla bajo forma de una combinación lineal) en funciones elementales cuyas primitivas son conocidas o se pueden obtener leyendo al revés una tabla de derivadas, y luego aplicar la linealidad de la integral:
\int_a^b (k \cdot \mbox{f}(x) + l \cdot \mbox{g}(x)) dx = k \cdot \int_a^b \mbox{f}(x) dx + l \cdot \int_a^b \mbox{g}(x) dx \,\!
Aquí están las principales funciones primitivas:
Función F \,\!: primitiva de f \,\! función f \,\!: derivada de F \,\!
f\left(x\right) = \frac {x^{n+1}}{n+1} + k \,\! \begin{matrix}f'\left(x\right) = x^n & & \mathrm{ , para} & n \neq -1 \end{matrix} \,\!
f\left(x\right) = e^x + k \,\! f'\left(x\right) = e^x \,\!
f\left(x\right) = \ln\left(x\right) + k \,\! f'\left(x\right) = \frac{1}{x} \,\!
f\left(x\right) = \frac {x^{1-n}}{1-n} + k \,\! \begin{matrix}f'\left(x\right) = \frac {1}{x^n} & & \mathrm{ , para} & n \neq 1 \end{matrix} \,\!
f\left(x\right) = -\cos\left(x\right) + k \,\! f'\left(x\right) = \sin\left(x\right) \,\!
f\left(x\right) = \sin\left(x\right) + k \,\! f'\left(x\right) = \cos\left(x\right) \,\!
f\left(x\right) =  \tan\left(x\right) + k \,\! f'\left(x\right) = \frac {1}{\cos^2\left (x\right)} \,\!
\begin{matrix}f\left(x\right) = \frac {a^x}{\ln(a)} + k & & \mathrm{, si} & a > 0 \end{matrix} \,\! f'\left(x\right) = a^x \,\!
 f\left(x\right) = \frac {2}{3} \sqrt{x}^3 + k \,\! f'\left(x\right) = \sqrt {x} \,\!
f\left(x\right) = ax + k \,\! f'\left(x\right) = a \,\!
f\left(x\right) = \arctan(x) + k \,\! f'\left(x\right) = \frac{1}{1+x^2} \,\!
Por ejemplo, busquemos una primitiva de x → x(2-3x). Como no se conocen primitivas de un producto, desarrollemos la expresión: x(2-3x)= 2x - 3x2. 2x es la derivada de x2, 3x2 es la de x3, por lo tanto 2x - 3x2 tiene como primitiva x2 - x3 + k. Si además se pide que la primitiva verifique una condición F(x0) = y0 (que recibe el nombre de condición inicial cuando se trata de un problema de física), entonces la constante k es unívocamente determinada. En el ejemplo, si se impone F(2) = 3, entonces forzosamente k = 7.

Métodos de integración

Artículo principal: Métodos de integración
Tenemos varios métodos a nuestra disposición:
  • La linealidad de la integración nos permite descomponer integrales complicadas en otras más sencillas.
  • Integración por sustitución, a menudo combinada con identidades trigonométricas o el logaritmo neperiano.
  • Integración por partes para integrar productos de funciones.
  • El método de la regla de la cadena inversa, un caso especial de la integración por sustitución.
  • El método de fracciones parciales nos permite integrar todas las funciones racionales (fracciones de dos polinomios).
  • El algoritmo de Risch.
  • Integrales también pueden calcularse utilizando tablas de integrales.















(2015). Integral indefinida.En: wikiped… Buscado elMartes, 10 de noviembre de 2015 Disponible en: https://es.wikipedia.org/wiki/Integraci%C3%B3n_indefinida

ARYA, J. C. (2009). Matemáticas aplicadas a la administración. México: Pearson Educacíon.
  • Share This:  
  •  Facebook
  •  Twitter
  •  Google+
  •  Stumble
  •  Digg
Enviar por correo electrónicoEscribe un blogCompartir en XCompartir con Facebook
Entrada más reciente Entrada antigua Inicio

0 comentarios:

Publicar un comentario

Páginas

  • Página principal

Popular Posts

  • 4.3 Determinantes
    4.3 Determinantes El objetivo general de esta materia Matemáticas II es brindarnos nuevos conocimientos de nuevos tem...
  • 4.3.3 Propiedades de los determinantes.
    4.3.3 Propiedades de los determinantes.   El objetivo general de esta materia Matemáticas II es brindarnos nuevos conoc...
  • 4.1.2 Sistemas de ecuaciones lineales: consistentes, inconsistentes, y su representación paramétrica del conjunto solución.
    4.1.2 Sistemas de ecuaciones lineales: consistentes, inconsistentes, y su representación paramétrica del conjunto solución. ...
  • 2.3.2 Integral de una constante por una variable.
    2.3.2 Integral de una constante por una variable. Sé que ya estás desesperado por iniciar. Bueno pues, adelante, sólo se...
  • 4.1.5 Eliminación de Gauss y Gauss-Jordan.
    4.1.5 Eliminación de Gauss y Gauss-Jordan. El objetivo general de esta materia Matemáticas II es brindarnos nuevos co...
  • 4.3.2 Expansión por cofactores.
    4.3.2 Expansión por cofactores. El objetivo general de esta materia Matemáticas II es brindarnos nuevos conocimientos ...
  • 2.2.1 Integración con condiciones iniciales.
    2.2.1 Integración con condiciones iniciales. Hemos estado analizando temas de gran importancia que son necesarios para en...
  • 4.1 Sistemas de ecuaciones lineales.
    4.1 Sistemas de ecuaciones lineales. El objetivo general de esta materia Matemáticas II es brindarnos nuevos conocimi...
  • 3.2 Teorema Fundamental del cálculo.
    3.2 Teorema Fundamental del cálculo.  El objetivo general de esta materia Matemáticas II es brindarnos nuevos conocim...
  • 2.3.6 Integral de una suma (diferencia) de funciones.
    2.3.6 Integral de una suma (diferencia) de funciones. El objetivo general de esta materia Matemáticas II es brindarnos nue...

Recent Posts

Unordered List

Pages

  • Página principal

Text Widget

Blog Archive

  • ▼  2015 (43)
    • ►  diciembre (2)
    • ▼  noviembre (41)
      • 4.3.4 Regla de Cramer.
      • 4.3.3 Propiedades de los determinantes.
      • 4.3.2 Expansión por cofactores.
      • 4.3.1 Definición de un determinante.
      • 4.3 Determinantes
      • 4.2.4 Matriz inversa.
      • 4.2.3 Propiedades de las operaciones con matrices.
      • 4.2.2 Operaciones con matrices (suma, diferencia, ...
      • 4.2.1 Tipos de matrices (cuadrada, rectangular, tr...
      • 4.2 Álgebra de Matrices
      • 4.1.5.5 Sistemas homogéneos.
      • 4.1.5.4 Reducción de Gauss y Gauss-Jordan.
      • 4.1.5.3 Operaciones elementales sobre renglones.
      • 4.1.5.2 Expresión matricial de un sistema de ecuac...
      • 4.1.5.1 Definición de matriz.
      • 4.1.5 Eliminación de Gauss y Gauss-Jordan.
      • 4.1.4 Sistemas de ecuaciones equivalentes.
      • 4.1.3 Métodos para resolución de sistemas de ecuac...
      • 4.1.2 Sistemas de ecuaciones lineales: consistente...
      • 4.1 Sistemas de ecuaciones lineales.
      • 3.4 Área entre una y dos curvas.
      • 3.3 Propiedades de la integral definida.
      • 3.2 Teorema Fundamental del cálculo.
      • 3.1 Área bajo la curva.
      • 2.3.10 Integrales incluyen au 2.3.11 I...
      • 2.3.9 Integrales que incluyen (1/u)du
      • 2.3.8 Integrales que incluyen funciones logarítmicas.
      • 2.3.7.2 Integrales que incluyen funciones exponenc...
      • 2.3.7 Regla de la potencia.
      • 2.3.6 Integral de una suma (diferencia) de funciones.
      • 2.3.5 Integral de una constante por una función de x.
      • 2.3.3 Integral de xn
      • 2.3.2 Integral de una constante por una variable.
      • 2.3.1 Integral indefinida de una constante.
      • 2.3 Fórmulas básicas de integración.
      • 2.2.1 Integración con condiciones iniciales.
      • 2.2 Integral indefinida.
      • 2.1 Antiderivada.
      • 1.3 Máximos y mínimos de funciones de dos variables.
      • 1.2 Derivadas parciales.
      • 1.1 Funciones en dos variables.
Con la tecnología de Blogger.

About

Blogger templates

Sample Text

Copyright © Mate2 | Powered by Blogger
Design by Hardeep Asrani | Blogger Theme by NewBloggerThemes.com | Distributed By Gooyaabi Templates