Mate2

sábado, 28 de noviembre de 2015

4.2.1 Tipos de matrices (cuadrada, rectangular, triangular, matriz identidad, matriz transpuesta).

 alejandra7     13:01     No comments   

4.2.1 Tipos de matrices (cuadrada, rectangular, triangular, matriz identidad, matriz transpuesta).

El objetivo general de esta materia Matemáticas II es brindarnos nuevos conocimientos de nuevos temas aplicados en ella, como: Tipos de matrices (cuadrada, rectangular, triangular, matriz identidad, matriz transpuesta).




Existen diversos tipos y clasificaciones de matrices:

Contenido

  • 1 Matríz cuadrada
  • 2 Matriz Rectangular
  • 3 Matriz Vertical
  • 4 Matriz Columna
  • 5 Matriz Horizontal
  • 6 Matriz Fila
  • 7 Matriz Diagonal
  • 8 Matriz Escalonada
  • 9 Matriz Triangular superior
  • 10 Matriz Triangular inferior
  • 11 Matriz Identidad
  • 12 Matriz Nula o Matriz Cero
  • 13 Matriz Opuesta
  • 14 Matriz Traspuesta
  • 15 Matriz Simétrica
  • 16 Matriz Antisimétrica
  • 17 Matriz Ortogonal
  • 18 Matriz Normal
  • 19 Matriz Conjugada
  • 20 Matriz Invertible
  • 21 Matriz Singular o Degenerada
  • 22 Matriz Permutación
  • 23 Matrices iguales
  • 24 Matriz Hermitiana
  • 25 Matriz definida positiva
  • 26 Matriz Unitaria
  • 27 Submatriz
  • 28 Resto del capítulo Matrices

Matríz cuadrada

Se dice que una matriz A es cuadrada si tiene el mismo número de filas que de columnas. Ejemplos de matriz cuadrada:

Puede ser una matriz con valores A\in\mathcal{M}_{3\times 3}(\mathbb{R})



   A =
   \begin{bmatrix}
      +4 & +7 & -9 \\
      +2  & +1  & +7 \\
      -5 & +6 & +9
   \end{bmatrix}

O también una matríz con subíndices (Genérica)B\in\mathcal{M}_{3\times 3}(\mathbb{R})



   B =
   \begin{bmatrix}
      b_{11} & b_{12} & b_{13}\\
      b_{21} & b_{22} & b_{23}\\
      b_{31} & b_{32} & b_{33}
   \end{bmatrix}

Puede ser de otro tamaño e incluso con variables C\in\mathcal{M}_{4\times 4}(\mathbb{R})



  C =
   \begin{bmatrix}
      +7 & +6 & 6 & -5\\
      +8 & (3*w) & +3 & -1\\
      -1 & +6 & (w+8) & +8\\
      -3& (6-w) & 0 & -6
   \end{bmatrix}
Se llama diagonal principal de una matriz A a la diagonal formada por los elementos  aii.
Se llama diagonal secundaria a la diagonal del cuadrado que no es la principal, tiene por extremos los elementos  a_{1,n} y  a_{n,1}, como características, todos los elementos tienen la particularidad que sus subíndices suman (n+1), por ejemplo  a_{8,  n-7}, donde 8 + (n - 7 ) = n + 1.

Matriz Rectangular

Es aquella matriz que no es cuadrada, esto es que la cantidad de filas es diferente de la cantidad de columnas.
Puede ser de dos formas; vertical u horizontal.

Matriz Vertical

Es aquella que tiene más filas que columnas.

Matriz Columna

Caso especial de matriz vertical que posee una sola columna.

Matriz Horizontal

Es aquella que tiene más columnas que filas.

Matriz Fila

Caso especial de matriz horizontal que posee una sola fila.

Matriz Diagonal

Se llama diagonal principal de una matriz A a la diagonal formada por los elementos aij.
Matriz diagonal, matriz cuadrada donde sus elementos  a_{ij} = 0  si  i \neq j .
La matriz identidad es una matriz diagonal.
Una matriz diagonal es una matriz cuadrada en que las entradas o valores son todos nulas salvo en la diagonal principal, y éstos incluso pueden ser nulos o no. Otra forma de decirlo es que es diagonal si todos sus elementos son nulos salvo algunos de la diagonal principal. Ejemplos de matrices Diagonales:


Puede ser una matriz con valores A\in\mathcal{M}_{3\times 3}(\mathbb{R})



   A =
   \begin{bmatrix}
      +4 & 0 & 0 \\
      0  & +1  & 0 \\
      0 & 0 & +9
   \end{bmatrix}

O también una matríz con subíndices (Genérica)B\in\mathcal{M}_{3\times 3}(\mathbb{R})



   B =
   \begin{bmatrix}
      b_{11} & 0 & 0\\
      0 & b_{22} & 0\\
      0 &0 & b_{33}
   \end{bmatrix}

Puede ser de otro tamaño e incluso con variables C\in\mathcal{M}_{4\times 4}(\mathbb{R})



  C =
   \begin{bmatrix}
      +7 & 0 & 0& 0\\
      0& (3*w)& 0 &0\\
      0& 0 & (w+8) & 0\\
      0& 0 &0  & -6
   \end{bmatrix}

Matriz Escalonada

Es toda matriz en la que el número de ceros que precede al primer elemento no nulo, de cada fila o de cada columna, es mayor que el de la precedente.
Puede ser escalonada por filas o escalonada por columnas.

Matriz Triangular superior

Se dice que una matriz (cuadrada) es triangular superior si todos los elementos que están por debajo de la diagonal principal son nulos.

Matriz Triangular inferior

Se dice que una matriz es triangular inferior si todos los elementos que están por encima de la diagonal principal son ceros.

Matriz Identidad

Se llama matriz identidad de orden n y se nota In a una matriz cuadrada de orden n en la que los elementos de la diagonal principal son 1 y el resto 0. I_3\in\mathcal{M}_{3\times 3}(\mathbb{R})


   I_3 =
   \begin{bmatrix}
      1 & 0 & 0\\
      0 & 1 & 0\\
      0 &0 & 1
   \end{bmatrix}

La matriz identidad puede ser de cualquier tamaño, siempre y cuando sea cuadrada

Matriz Nula o Matriz Cero

Una matriz cero o matriz nula es una matriz con todos sus elementos nulos, o sea de valor cero. Algunos ejemplos de matrices nulas son:


0_{1,1} = \begin{bmatrix}
0 \end{bmatrix}
,\ 
0_{2,2} = \begin{bmatrix}
0 & 0 \\
0 & 0 \end{bmatrix}
,\ 
0_{2,3} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \end{bmatrix}
, etc.\
Por lo tanto, una matriz nula de orden mxn asume la forma:


0_{K_{m,n}} = \begin{bmatrix}
0_K & 0_K & \cdots & 0_K \\
0_K & 0_K & \cdots & 0_K \\
\vdots & \vdots &  & \vdots \\
0_K & 0_K & \cdots & 0_K \end{bmatrix}_{m \times n}
Una matriz cero es, al mismo tiempo,matriz simétrica, antisimétrica, nilpotente y singular.

Matriz Opuesta

Teniendo una matriz determinada, se llama matriz opuesta de la antes mencionada a aquella que tiene por elementos los opuestos de los elementos de la matriz original.

Matriz Traspuesta

Matriz traspuesta (At). Se llama matriz traspuesta de una matriz A a aquella matriz cuyas filas coinciden con las columnas de A y las columnas coinciden con las filas de A.


  • Para una matriz A \in M_{m\times n}(\mathbb{R}), se define la matriz transpuesta de A=(a_{ij}), denotada por A^t \in M_{n\times m}(\mathbb{R}), como A^t=B=(b_{ij}) \quad b_{ji}=a_{ij} \quad \forall i \in \{1,2,\dots,m\} \text{ , } j \in \{1,2,\dots,n\}. Es decir, las filas de la matriz A corresponden a las columnas de B y viceversa.



A = \begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \end{bmatrix}
,    \ 
  A^t = \begin{bmatrix}
1 & 4 \\
2 & 5 \\ 
3 & 6 \end{bmatrix}
\

Matriz Simétrica

Una matriz es simétrica cuando es una matriz cuadrada, y es igual a su traspuesta.

Matriz Antisimétrica

Una matriz es antisimétrica cuando es una matriz cuadrada, y es igual a su traspuesta de signo opuesto, siendo los elementos de la diagonal principal nulos; de valor cero.

Matriz Ortogonal

Una matriz ortogonal es una matriz cuya matriz inversa coincide con su matriz traspuesta.

Matriz Normal

Sea A matriz compleja cuadrada, entonces es una matriz normal si y sólo si

A^{*}A=AA^{*}\,
donde A* es la matriz traspuesta conjugada de A (también llamado hermitiano)

Matriz Conjugada

Una Matriz conjugada es el resultado de la sustitución de los elementos de una matriz A por sus valores conjugados. Es decir, la parte imaginaria de los elementos de la matriz cambian su signo.
Ejemplo de matrices conjugadas


B = \begin{pmatrix}
2-5i & 3-5i & 3-i \\
4+3i & 4 &2+i \\
1& 3+2i & 1-4i
\end{pmatrix}, \overline{B} = \begin{pmatrix}
2+5i & 3+5i & 3+i \\
4-3i & 4 & 2-i\\
1 & 3-2i & 1+4i\end{pmatrix}

Matriz Invertible

También llamada matriz , no singular, no degenerada, regular.
Una matriz cuadrada A de orden n se dice que es invertible si existe otra matriz cuadrada de orden n, llamada matriz inversa de A y representada como A−1, tal que

AA−1 = A−1A = In,
donde In es la matriz identidad de orden n y el producto utilizado es el producto de matrices usual. Una matriz tiene inversa siempre que su determinante no sea cero.
La inversión de matrices es el proceso de encontrar la matriz inversa de una matriz dada.

Matriz Singular o Degenerada

También llamada no regular. Una matriz es singular si y solo si su determinante es cero.

Matriz Permutación

La matriz permutación es la matriz cuadrada con todos sus n×n elementos iguales a 0, excepto uno cualquiera por cada fila y columna, el cual debe ser igual a 1.

Matrices iguales

Se dice que dos matrices A y B son iguales si tienen la misma dimensión y son iguales elemento a elemento, es decir, aij=bij i=1,...,n j=1,2,...,m.

Matriz Hermitiana

Una matriz Hermitiana (o Hermítica) es una matriz cuadrada de elementos complejos que tiene la característica de ser igual a su propia traspuesta conjugada. Es decir, el elemento en la i-ésima fila y j-ésima columna es igual al conjugado del elemento en la j-ésima fila e i-ésima columna, para todos los índices i y j.

Matriz definida positiva

Una matriz definida positiva es una matriz hermitiana que en muchos aspectos es similar a un número real positivo.

Matriz Unitaria

Es una matriz compleja U, de n por n elementos, que satisface la condición:

U^* U = UU^* = I_n\,
donde I_n\, es la matriz identidad y U^* \, es el traspuesto conjugado (también llamado el hermitiano adjunto o la hermítica) de U. Esta condición implica que una matriz U es unitaria si tiene inversa igual a su traspuesta conjugada U^* \,.
Una matriz unitaria en la que todas las entradas son reales es una matriz ortogonal.

Submatriz

A partir de una Matriz M, se llama submatriz M' a toda matriz obtenida suprimiendo p filas y q columnas en M. Si M es de orden mxn, M' será de orden (m-p)x(n-q), es decir con p filas menos y q columnas menos. Es evidente que p < m ; q < n.

Resto del capítulo Matrices

  • Conceptos previos
  • Concepto de Matriz
  • Determinante de una matriz
  • Tipos de matrices
  • Suma de matrices
  • Sistema de ecuaciones lineales
  • Regla de Cramer















(2015). Tipos de matrices (cuadrada, rectangular, triangular, matriz identidad, matriz transpuesta).En: wikiboo… Buscado elMartes, 10 de noviembre de 2015 Disponible en: https://es.wikibooks.org/wiki/Matem%C3%A1ticas/Matrices/Tipos_de_matrices


ARYA, J. C. (2009). Matemáticas aplicadas a la administración. México: Pearson Educacíon.
  • Share This:  
  •  Facebook
  •  Twitter
  •  Google+
  •  Stumble
  •  Digg
Enviar por correo electrónicoEscribe un blogCompartir en XCompartir con Facebook
Entrada más reciente Entrada antigua Inicio

0 comentarios:

Publicar un comentario

Páginas

  • Página principal

Popular Posts

  • 4.3 Determinantes
    4.3 Determinantes El objetivo general de esta materia Matemáticas II es brindarnos nuevos conocimientos de nuevos tem...
  • 4.1.2 Sistemas de ecuaciones lineales: consistentes, inconsistentes, y su representación paramétrica del conjunto solución.
    4.1.2 Sistemas de ecuaciones lineales: consistentes, inconsistentes, y su representación paramétrica del conjunto solución. ...
  • 2.3.2 Integral de una constante por una variable.
    2.3.2 Integral de una constante por una variable. Sé que ya estás desesperado por iniciar. Bueno pues, adelante, sólo se...
  • 4.1.5 Eliminación de Gauss y Gauss-Jordan.
    4.1.5 Eliminación de Gauss y Gauss-Jordan. El objetivo general de esta materia Matemáticas II es brindarnos nuevos co...
  • 4.3.2 Expansión por cofactores.
    4.3.2 Expansión por cofactores. El objetivo general de esta materia Matemáticas II es brindarnos nuevos conocimientos ...
  • 4.3.3 Propiedades de los determinantes.
    4.3.3 Propiedades de los determinantes.   El objetivo general de esta materia Matemáticas II es brindarnos nuevos conoc...
  • 2.2.1 Integración con condiciones iniciales.
    2.2.1 Integración con condiciones iniciales. Hemos estado analizando temas de gran importancia que son necesarios para en...
  • 4.1 Sistemas de ecuaciones lineales.
    4.1 Sistemas de ecuaciones lineales. El objetivo general de esta materia Matemáticas II es brindarnos nuevos conocimi...
  • 2.3.6 Integral de una suma (diferencia) de funciones.
    2.3.6 Integral de una suma (diferencia) de funciones. El objetivo general de esta materia Matemáticas II es brindarnos nue...
  • 4.2.1 Tipos de matrices (cuadrada, rectangular, triangular, matriz identidad, matriz transpuesta).
    4.2.1 Tipos de matrices (cuadrada, rectangular, triangular, matriz identidad, matriz transpuesta). El objetivo general...

Recent Posts

Unordered List

Pages

  • Página principal

Text Widget

Blog Archive

  • ▼  2015 (43)
    • ►  diciembre (2)
    • ▼  noviembre (41)
      • 4.3.4 Regla de Cramer.
      • 4.3.3 Propiedades de los determinantes.
      • 4.3.2 Expansión por cofactores.
      • 4.3.1 Definición de un determinante.
      • 4.3 Determinantes
      • 4.2.4 Matriz inversa.
      • 4.2.3 Propiedades de las operaciones con matrices.
      • 4.2.2 Operaciones con matrices (suma, diferencia, ...
      • 4.2.1 Tipos de matrices (cuadrada, rectangular, tr...
      • 4.2 Álgebra de Matrices
      • 4.1.5.5 Sistemas homogéneos.
      • 4.1.5.4 Reducción de Gauss y Gauss-Jordan.
      • 4.1.5.3 Operaciones elementales sobre renglones.
      • 4.1.5.2 Expresión matricial de un sistema de ecuac...
      • 4.1.5.1 Definición de matriz.
      • 4.1.5 Eliminación de Gauss y Gauss-Jordan.
      • 4.1.4 Sistemas de ecuaciones equivalentes.
      • 4.1.3 Métodos para resolución de sistemas de ecuac...
      • 4.1.2 Sistemas de ecuaciones lineales: consistente...
      • 4.1 Sistemas de ecuaciones lineales.
      • 3.4 Área entre una y dos curvas.
      • 3.3 Propiedades de la integral definida.
      • 3.2 Teorema Fundamental del cálculo.
      • 3.1 Área bajo la curva.
      • 2.3.10 Integrales incluyen au 2.3.11 I...
      • 2.3.9 Integrales que incluyen (1/u)du
      • 2.3.8 Integrales que incluyen funciones logarítmicas.
      • 2.3.7.2 Integrales que incluyen funciones exponenc...
      • 2.3.7 Regla de la potencia.
      • 2.3.6 Integral de una suma (diferencia) de funciones.
      • 2.3.5 Integral de una constante por una función de x.
      • 2.3.3 Integral de xn
      • 2.3.2 Integral de una constante por una variable.
      • 2.3.1 Integral indefinida de una constante.
      • 2.3 Fórmulas básicas de integración.
      • 2.2.1 Integración con condiciones iniciales.
      • 2.2 Integral indefinida.
      • 2.1 Antiderivada.
      • 1.3 Máximos y mínimos de funciones de dos variables.
      • 1.2 Derivadas parciales.
      • 1.1 Funciones en dos variables.
Con la tecnología de Blogger.

About

Blogger templates

Sample Text

Copyright © Mate2 | Powered by Blogger
Design by Hardeep Asrani | Blogger Theme by NewBloggerThemes.com | Distributed By Gooyaabi Templates